

PRABHJYOT KAUR
Principal Scientist
Department of Climate Change and Agricultural Meteorology
Punjab Agricultural University
Ludhiana, Punjab, India
Email: pksidhu@pau.edu , prabhksidhu@gmail.com

Research ID: Vidwan-ID: 632189

<https://pau-in.academia.edu/PrabhjyotKaur>,
<https://www.researchgate.net/profile/Prabhjyot-Kaur>,
<https://scholar.google.co.in/citations?user=EhbhScQAAAAJ&hl=en>,
<https://orcid.org/0000-0003-1632-9727>,
<https://www.webofscience.com/wos/author/record/JNI-0371-2023>,
<https://www.scopus.com/authid/detail.uri?authorId=7409906300>

Professional Preparation:

B.Sc. Medical (1989) – GNDU, Amritsar (Punjab, India)
M. Sc. Agricultural Meteorology (1993) – PAU, Ludhiana (Punjab, India)
Ph.D. Agricultural Meteorology (2004) - PAU, Ludhiana (Punjab, India)

Appointments:

- Assistant Agrometeorologist – 1995 to 2007 at PAU, Ludhiana
- Agrometeorologist – 2007 to 2010 at PAU, Ludhiana
- Principal Scientist – 2010 to date at PAU, Ludhiana
- Head of the Department – 27 February 2018 to 26 February 2022

Qualifications Summary:

Dr Prabhjyot Kaur's contributions to Agrometeorology and the applications of crop models in real-world problem-solving situations have helped her in getting research funds from highly competitive agencies in India, including the Indian Council of Agricultural Research and Department of Science & Technology, and she has handled thirteen research projects. The Ministry of Environment and Forests, India, invited her to be part of India's Second National Communication to the UNFCCC and awarded her funding through M/S Winrock International, New Delhi.

Dr Prabhjyot Kaur has published more than 200 peer-reviewed research articles in both national and international journals. She has also authored 1 book, 12 book chapters, 18 research bulletins, 54 popular articles and 4 teaching manuals. She has guided 04 PhD and 15 M.Sc. students as a major advisor. She has organised 23 workshops/ training programmes/ climate change awareness programmes and delivered 56 invited lectures, 14 radio/TV talks in the field of Agrometeorology. She has attended 10 international and 76 national conferences/seminars/workshops.

Research projects completed:

1. **Period:** 2020 to 2023: Optimizing cereal productivity under RCP projected climatic scenarios by mid and end of 21st century in Punjab. **Role:** PI, **Funding Source:** SERB, GOI, New Delhi, **Budget** Rs 23.4 Lacs

2. **Period:** 2011 to 2024: Forecasting Agricultural output using Space, Agrometeorology and Land-based observation. **Role:** CoPI, **Funding Source:** MoES, GOI, New Delhi **Budget** Rs 10 Lacs/year
3. **Period:** 2011- 2015: Mitigating the effect of climate change on crop productivity **Role:** CoPI, **Funding Source:** PURSE -DST, New Delhi, **Budget** Rs 200 Lacs
4. **Period:** 2009-2013: Network project on “Impact, adaptation and vulnerability of Indian agriculture to climate change” entitled, **“Assessment of impacts of climate change on crop production in the state of Punjab and agronomic adaptation opportunities”** **Role:** Co PI, **Funding Source:** ICAR, New Delhi, **Budget** Rs 34.40 Lacs
5. **Period:** 2007-2010: Indo-US AKI project on **“Information and communication technology for efficient water management”** **Role:** Project team member and PI at PAU, **Funding Source:** USDA, USA and ICAR, New Delhi, **Budget** Rs 12.80 Lacs
6. **Period:** 2008-2010: Assessment of impacts of climate change on Rice and Wheat in Punjab. **Role:** Project Leader, **Funding Source:** M/s Winrock International, India & Ministry of Environment & Forests, India. **Budget** Rs 1.90 Lacs
7. **Period:** 2004-2007: Assessment of climatic variability and technology changes on actual and simulated crop productivity in Punjab. **Role:** Project Leader, **Funding Source:** ICAR, New Delhi, **Budget** Rs 15.50 Lacs
8. **Period:** 2004-2007: Evaluation of potential productivity of major oilseed crops in Punjab using crop simulation models. **Role:** Project Leader, **Funding Source:** DST, New Delhi, **Budget** Rs 23.95 Lacs
9. **Period:** 1999-2003: Development of simulated crop models and a decision support system for nutrient management using medium-term weather forecasts. **Role:** Co PI, **Funding Source:** NATP-ICAR, New Delhi, **Budget** Rs 20.73 Lacs
10. **Period:** 2004-2007: Climatic variability and its effects on crop production in Punjab. **Role:** Co PI, **Funding Source:** ICAR, New Delhi, **Budget** Rs 10.13 Lacs

Research projects/activities in hand

1. **Period:** 2003- to date: All India Co-ordinated Research Project on Agrometeorology **Role:** Project leader, **Funding Source:** ICAR, New Delhi **Budget** Rs 48 Lacs per year
2. **Period:** 2011- to date: National Initiative on Climate Resilient Agriculture (NICRA) **Role:** Project leader, **Funding Source:** ICAR, New Delhi **Budget** Rs 12 Lacs/ year
3. **Period:** 2025 – to date: Groundwater regime impact and climate change towards sustainable development goal **Role:** Co PI, **Funding Source:** ISRO, Bengaluru, **Budget** Rs 33.68 Lacs

Awards and Recognitions:

2025: Best Centre Award of AICRP on Agrometeorology (2021-25).
 2022: Fellowship of the Association of Agrometeorologists (FAAM)
 2016: Best Centre Award of AICRP on Agrometeorology (2015-16).
 2008: Dr P.D. Mistry Award for the Best Ph.D. Thesis in Agricultural Meteorology

List of 10 best publications

S.No.	Publication	NAAS rating
1.	Prabhjyot-Kaur , Harleen Kaur and N S Bains. (2025) Rice cultivation a contributor to climate change in Indian Punjab—A perspective. <i>Theoretical & Applied Climatology</i> 156: 138	8.80
2.	Prabhjyot-Kaur , Samanpreet Kaur, Abhishek Dhir, Harsimran Kaur and B B Vashisht. 2024. Agro-Eco-Resource Zonation (AERZ) for sustainable agriculture using GIS and AHP techniques in Indian Punjab. <i>Theoretical and Applied Climatology</i> 155(8) : 8047–8066	9.40

3.	Prabhjyot-Kaur, S S Sandhu and Shivani Kothiyal. 2024. Optimising sowing window for wheat cultivars under RCP 4.5 and RCP 6.0 scenarios during the 21st century in Indian Punjab. <i>J. of Agronomy and Crop Science</i> 210(4) : e12711	9.50
4.	Prabhjyot-Kaur, S S Sandhu, Shivani Kothiyal and Jatinder Kaur. 2023. An assessment of adaptation measures to enhance wheat productivity under climate change during early, mid and end of 21 st century in Indian Punjab. <i>J. Agric. Science (Cambridge, UK)</i> : 161 (4): 477-487.	8.60
5.	Shivani Kothiyal, Prabhjyot-Kaur, S S Sandhu and Jatinder Kaur. 2023. Modelling the climate change impact of mitigation (RCP 2.6) and high emission (RCP 8.5) scenario on maize yield and possible adaptation measures in different agroclimatic zones of Punjab, India. <i>J. of the Science of Food and Agriculture</i> 103 : 6984-6994.	10.13
6.	Shivani Kothiyal, Prabhjyot-Kaur and Jatinder Kaur. 2023. A critical analysis of effect of projected temperature and rainfall for differential sowing of maize cultivars under RCP4.5 and RCP6.0 scenarios for Punjab. <i>Theoretical and Applied Climatology</i> 151 : 329–354	9.41
7.	Jatinder Kaur, Prabhjyot-Kaur and Shivani Kothiyal. 2022. Futuristic changes in monthly meteorological parameters as simulated by four GCMs under four emission based scenarios at Ludhiana, Punjab. <i>Arabian J of Geosciences</i> 15 : 906	7.83
8.	Prabhjyot-Kaur, Sandhu S S, Dhillon B S and H Singh. 2021. Rice yield variability in Punjab – an overview of five decades. <i>Paddy & Water Environment</i> 19(4) :673-681	7.26
9.	B.S. Chauhan, Prabhjyot-Kaur, G. Mahajan, R. K. Randhawa, H. Singh, and M.S. Kang. 2014. Global Warming and Its Possible Impact on Agriculture in India. <i>Advances in Agronomy</i> 123 : 65 -121.	11.60
10.	Prabhjyot-Kaur and S.S. Hundal. 1999. Forecasting growth and yield of groundnut (<i>Arachis hypogaea</i>) with a dynamic simulation model "PNUTGRO" under Punjab conditions. <i>J. Agric. Science (Cambridge, UK)</i> . 133 (2) : 167-173.	7.70